
Automated Testing

Types of Automated Tests
● Functional Tests

○ Automated tests, typically managed by the maintainer of a Contrib project
○ Installs a fresh, empty, instance of Drupal on a web server to test for expected behavior of the

Core base code and other Drupal Contrib modules (also known as plugins)
○ Example: Testing that Drupal 8 installs and that content can be created, edited, and deleted on

Deb’s shiny new Drupal 8 server.

● Unit Tests
○ Very low-level tests to check for expected functionality of a simple operation
○ Example: If I have a function that converts Farenheit temperatures to Celsius, I might write a

unit test that verifies that 32 degrees F converts to 0 degrees C.

● Feature Tests
○ This is Eric’s focus!
○ Testing a new project or feature on a working site, populated with content
○ Verifies that a new feature for one part of our site does not have unintended consequences

elsewhere on our site.

Behavior Driven Development

Feature: Some terse yet descriptive text of what is desired
 In order to realize a named business value
 As an explicit system actor
 I want to gain some beneficial outcome which furthers the goal

 Scenario: Some determinable business situation
 Given some precondition
 And some other precondition
 When some action by the actor
 And some other action
 And yet another action
 Then some testable outcome is achieved
 And something else we can check happens too

● BDD emphasizes use of automated tests written in plain English
● Gherkin language: A common syntax for writing BDD feature tests
● Behat: A Drupal-friendly framework used to interpret feature tests written in

the Gherkin language

Generic example of a feature test
Feature: Serve coffee
 In order to earn money
 Customers should be able to
 buy coffee at all times

 Scenario: Buy last coffee
 Given there are 1 coffees left in the machine
 And I have deposited 1 dollar
 When I press the coffee button
 Then I should be served a coffee

Behat feature tests for spine-health.com!

Feature: Test DrupalContext
 In order to prove the Drupal context using the blackbox driver is working properly
 As a developer
 I need to use the step definitions of this context

 Scenario: Test the ability to find a heading in a region
 Given I am on the homepage
 When I click "Conditions"
 Then I should see the heading "Pain Conditions Health Center" in the "title" region
 And take a screenshot

 Scenario: Clicking content in a region
 Given I am at "treatment"
 When I click "Alternative Care" in the "content" region
 Then I should see "Alternative Care Topics" in the "left sidebar"
 And I should see the link "Acupuncture" in the "left sidebar" region

● Basic content tests that don’t require a graphical web browser:

Blackbox: a non-graphical web browser
● Used for checking text content and basic html elements
● Does not support browsing our site as a mobile device
● “Screenshot” from Blackbox’s non-graphical web browser:

Graphical feature tests for spine-health.com

@javascript
Feature: VH Homepage Ads
 In order to prove ads on the site display as intended
 As an anonymous user
 I need to verify common advertisement entities.

 @desktop
 Scenario: Assert ad on desktops is in "right sidebar" region with width=300
 Given I am on the homepage
 And I wait 2 seconds
 Then I should see 1 advertisement of width "300" in the "right sidebar"
 And the "#block-vh-dfp-dfp-ad-r1" element should contain "advertisement"
 And take a screenshot

 @mobile
 Scenario: Assert ad on mobile is in "right sidebar" region with width=300
 Given I am on the homepage
 And I wait 2 seconds
 Then I should see 1 advertisement of width "300" in the "right sidebar"
 And the "#block-vh-dfp-dfp-ad-r1m" element should contain "advertisement"
 And take a screenshot

● Many feature tests require the use of a graphical web browser, such as:

Driving Google Chrome with Behat
● Essential for checking graphical functionality
● Supports browsing as either a desktop or mobile device
● Screenshots from Google Chrome as taken with Behat:

Automated Testing - Wrapping up
● Gherkin language is simple to read, but:

○ The Behat code that interprets Gherkin for driving a browser is complex

○ Expanding Behat’s functionality is complex

■ Limited documentation online for expanding graphical web browser functionality.

● Lots of in-house custom Behat code to do things like:
○ Browse site as a mobile device
○ Hover over a pop-up menu and click a sub-menu link
○ Check for video and advertisement properties

● To do:
○ Write more tests!

■ Currently: 13 Features containing 60 Scenarios
■ Nearly all existing Scenarios are for spine-health.com

○ Expand automated testing to other health sites
○ Organize feature tests in a logical way
○ Create a cloud-based service to routinely run Behat tests, similar to Are-You-Okay

